\(\int \tan ^4(e+f x) (a+b \tan ^2(e+f x))^2 \, dx\) [205]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 91 \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=(a-b)^2 x-\frac {(a-b)^2 \tan (e+f x)}{f}+\frac {(a-b)^2 \tan ^3(e+f x)}{3 f}+\frac {(2 a-b) b \tan ^5(e+f x)}{5 f}+\frac {b^2 \tan ^7(e+f x)}{7 f} \]

[Out]

(a-b)^2*x-(a-b)^2*tan(f*x+e)/f+1/3*(a-b)^2*tan(f*x+e)^3/f+1/5*(2*a-b)*b*tan(f*x+e)^5/f+1/7*b^2*tan(f*x+e)^7/f

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3751, 472, 209} \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {b (2 a-b) \tan ^5(e+f x)}{5 f}+\frac {(a-b)^2 \tan ^3(e+f x)}{3 f}-\frac {(a-b)^2 \tan (e+f x)}{f}+x (a-b)^2+\frac {b^2 \tan ^7(e+f x)}{7 f} \]

[In]

Int[Tan[e + f*x]^4*(a + b*Tan[e + f*x]^2)^2,x]

[Out]

(a - b)^2*x - ((a - b)^2*Tan[e + f*x])/f + ((a - b)^2*Tan[e + f*x]^3)/(3*f) + ((2*a - b)*b*Tan[e + f*x]^5)/(5*
f) + (b^2*Tan[e + f*x]^7)/(7*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 472

Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegr
and[(e*x)^m*((a + b*x^n)^p/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n
, 0] && IGtQ[p, 0] && (IntegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^4 \left (a+b x^2\right )^2}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {\text {Subst}\left (\int \left (-(a-b)^2+(a-b)^2 x^2+(2 a-b) b x^4+b^2 x^6+\frac {a^2-2 a b+b^2}{1+x^2}\right ) \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {(a-b)^2 \tan (e+f x)}{f}+\frac {(a-b)^2 \tan ^3(e+f x)}{3 f}+\frac {(2 a-b) b \tan ^5(e+f x)}{5 f}+\frac {b^2 \tan ^7(e+f x)}{7 f}+\frac {(a-b)^2 \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = (a-b)^2 x-\frac {(a-b)^2 \tan (e+f x)}{f}+\frac {(a-b)^2 \tan ^3(e+f x)}{3 f}+\frac {(2 a-b) b \tan ^5(e+f x)}{5 f}+\frac {b^2 \tan ^7(e+f x)}{7 f} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(190\) vs. \(2(91)=182\).

Time = 0.07 (sec) , antiderivative size = 190, normalized size of antiderivative = 2.09 \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {a^2 \arctan (\tan (e+f x))}{f}-\frac {2 a b \arctan (\tan (e+f x))}{f}+\frac {b^2 \arctan (\tan (e+f x))}{f}-\frac {a^2 \tan (e+f x)}{f}+\frac {2 a b \tan (e+f x)}{f}-\frac {b^2 \tan (e+f x)}{f}+\frac {a^2 \tan ^3(e+f x)}{3 f}-\frac {2 a b \tan ^3(e+f x)}{3 f}+\frac {b^2 \tan ^3(e+f x)}{3 f}+\frac {2 a b \tan ^5(e+f x)}{5 f}-\frac {b^2 \tan ^5(e+f x)}{5 f}+\frac {b^2 \tan ^7(e+f x)}{7 f} \]

[In]

Integrate[Tan[e + f*x]^4*(a + b*Tan[e + f*x]^2)^2,x]

[Out]

(a^2*ArcTan[Tan[e + f*x]])/f - (2*a*b*ArcTan[Tan[e + f*x]])/f + (b^2*ArcTan[Tan[e + f*x]])/f - (a^2*Tan[e + f*
x])/f + (2*a*b*Tan[e + f*x])/f - (b^2*Tan[e + f*x])/f + (a^2*Tan[e + f*x]^3)/(3*f) - (2*a*b*Tan[e + f*x]^3)/(3
*f) + (b^2*Tan[e + f*x]^3)/(3*f) + (2*a*b*Tan[e + f*x]^5)/(5*f) - (b^2*Tan[e + f*x]^5)/(5*f) + (b^2*Tan[e + f*
x]^7)/(7*f)

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.08

method result size
norman \(\left (a^{2}-2 a b +b^{2}\right ) x +\frac {b^{2} \tan \left (f x +e \right )^{7}}{7 f}-\frac {\left (a^{2}-2 a b +b^{2}\right ) \tan \left (f x +e \right )}{f}+\frac {\left (a^{2}-2 a b +b^{2}\right ) \tan \left (f x +e \right )^{3}}{3 f}+\frac {\left (2 a -b \right ) b \tan \left (f x +e \right )^{5}}{5 f}\) \(98\)
parts \(\frac {a^{2} \left (\frac {\tan \left (f x +e \right )^{3}}{3}-\tan \left (f x +e \right )+\arctan \left (\tan \left (f x +e \right )\right )\right )}{f}+\frac {b^{2} \left (\frac {\tan \left (f x +e \right )^{7}}{7}-\frac {\tan \left (f x +e \right )^{5}}{5}+\frac {\tan \left (f x +e \right )^{3}}{3}-\tan \left (f x +e \right )+\arctan \left (\tan \left (f x +e \right )\right )\right )}{f}+\frac {2 a b \left (\frac {\tan \left (f x +e \right )^{5}}{5}-\frac {\tan \left (f x +e \right )^{3}}{3}+\tan \left (f x +e \right )-\arctan \left (\tan \left (f x +e \right )\right )\right )}{f}\) \(131\)
derivativedivides \(\frac {\frac {b^{2} \tan \left (f x +e \right )^{7}}{7}+\frac {2 a b \tan \left (f x +e \right )^{5}}{5}-\frac {b^{2} \tan \left (f x +e \right )^{5}}{5}+\frac {a^{2} \tan \left (f x +e \right )^{3}}{3}-\frac {2 a b \tan \left (f x +e \right )^{3}}{3}+\frac {b^{2} \tan \left (f x +e \right )^{3}}{3}-a^{2} \tan \left (f x +e \right )+2 a b \tan \left (f x +e \right )-b^{2} \tan \left (f x +e \right )+\left (a^{2}-2 a b +b^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )}{f}\) \(133\)
default \(\frac {\frac {b^{2} \tan \left (f x +e \right )^{7}}{7}+\frac {2 a b \tan \left (f x +e \right )^{5}}{5}-\frac {b^{2} \tan \left (f x +e \right )^{5}}{5}+\frac {a^{2} \tan \left (f x +e \right )^{3}}{3}-\frac {2 a b \tan \left (f x +e \right )^{3}}{3}+\frac {b^{2} \tan \left (f x +e \right )^{3}}{3}-a^{2} \tan \left (f x +e \right )+2 a b \tan \left (f x +e \right )-b^{2} \tan \left (f x +e \right )+\left (a^{2}-2 a b +b^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )}{f}\) \(133\)
parallelrisch \(\frac {15 b^{2} \tan \left (f x +e \right )^{7}+42 a b \tan \left (f x +e \right )^{5}-21 b^{2} \tan \left (f x +e \right )^{5}+35 a^{2} \tan \left (f x +e \right )^{3}-70 a b \tan \left (f x +e \right )^{3}+35 b^{2} \tan \left (f x +e \right )^{3}+105 a^{2} f x -210 a b f x +105 b^{2} f x -105 a^{2} \tan \left (f x +e \right )+210 a b \tan \left (f x +e \right )-105 b^{2} \tan \left (f x +e \right )}{105 f}\) \(135\)
risch \(x \,a^{2}-2 x a b +x \,b^{2}-\frac {4 i \left (105 a^{2} {\mathrm e}^{12 i \left (f x +e \right )}-315 a b \,{\mathrm e}^{12 i \left (f x +e \right )}+210 b^{2} {\mathrm e}^{12 i \left (f x +e \right )}+525 a^{2} {\mathrm e}^{10 i \left (f x +e \right )}-1260 a b \,{\mathrm e}^{10 i \left (f x +e \right )}+630 b^{2} {\mathrm e}^{10 i \left (f x +e \right )}+1120 a^{2} {\mathrm e}^{8 i \left (f x +e \right )}-2555 a b \,{\mathrm e}^{8 i \left (f x +e \right )}+1540 b^{2} {\mathrm e}^{8 i \left (f x +e \right )}+1330 a^{2} {\mathrm e}^{6 i \left (f x +e \right )}-3080 a b \,{\mathrm e}^{6 i \left (f x +e \right )}+1540 b^{2} {\mathrm e}^{6 i \left (f x +e \right )}+945 a^{2} {\mathrm e}^{4 i \left (f x +e \right )}-2121 a b \,{\mathrm e}^{4 i \left (f x +e \right )}+1218 b^{2} {\mathrm e}^{4 i \left (f x +e \right )}+385 a^{2} {\mathrm e}^{2 i \left (f x +e \right )}-812 a b \,{\mathrm e}^{2 i \left (f x +e \right )}+406 b^{2} {\mathrm e}^{2 i \left (f x +e \right )}+70 a^{2}-161 a b +88 b^{2}\right )}{105 f \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{7}}\) \(297\)

[In]

int(tan(f*x+e)^4*(a+b*tan(f*x+e)^2)^2,x,method=_RETURNVERBOSE)

[Out]

(a^2-2*a*b+b^2)*x+1/7*b^2*tan(f*x+e)^7/f-(a^2-2*a*b+b^2)/f*tan(f*x+e)+1/3*(a^2-2*a*b+b^2)/f*tan(f*x+e)^3+1/5*(
2*a-b)*b*tan(f*x+e)^5/f

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.03 \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {15 \, b^{2} \tan \left (f x + e\right )^{7} + 21 \, {\left (2 \, a b - b^{2}\right )} \tan \left (f x + e\right )^{5} + 35 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} \tan \left (f x + e\right )^{3} + 105 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} f x - 105 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} \tan \left (f x + e\right )}{105 \, f} \]

[In]

integrate(tan(f*x+e)^4*(a+b*tan(f*x+e)^2)^2,x, algorithm="fricas")

[Out]

1/105*(15*b^2*tan(f*x + e)^7 + 21*(2*a*b - b^2)*tan(f*x + e)^5 + 35*(a^2 - 2*a*b + b^2)*tan(f*x + e)^3 + 105*(
a^2 - 2*a*b + b^2)*f*x - 105*(a^2 - 2*a*b + b^2)*tan(f*x + e))/f

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 165 vs. \(2 (71) = 142\).

Time = 0.21 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.81 \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\begin {cases} a^{2} x + \frac {a^{2} \tan ^{3}{\left (e + f x \right )}}{3 f} - \frac {a^{2} \tan {\left (e + f x \right )}}{f} - 2 a b x + \frac {2 a b \tan ^{5}{\left (e + f x \right )}}{5 f} - \frac {2 a b \tan ^{3}{\left (e + f x \right )}}{3 f} + \frac {2 a b \tan {\left (e + f x \right )}}{f} + b^{2} x + \frac {b^{2} \tan ^{7}{\left (e + f x \right )}}{7 f} - \frac {b^{2} \tan ^{5}{\left (e + f x \right )}}{5 f} + \frac {b^{2} \tan ^{3}{\left (e + f x \right )}}{3 f} - \frac {b^{2} \tan {\left (e + f x \right )}}{f} & \text {for}\: f \neq 0 \\x \left (a + b \tan ^{2}{\left (e \right )}\right )^{2} \tan ^{4}{\left (e \right )} & \text {otherwise} \end {cases} \]

[In]

integrate(tan(f*x+e)**4*(a+b*tan(f*x+e)**2)**2,x)

[Out]

Piecewise((a**2*x + a**2*tan(e + f*x)**3/(3*f) - a**2*tan(e + f*x)/f - 2*a*b*x + 2*a*b*tan(e + f*x)**5/(5*f) -
 2*a*b*tan(e + f*x)**3/(3*f) + 2*a*b*tan(e + f*x)/f + b**2*x + b**2*tan(e + f*x)**7/(7*f) - b**2*tan(e + f*x)*
*5/(5*f) + b**2*tan(e + f*x)**3/(3*f) - b**2*tan(e + f*x)/f, Ne(f, 0)), (x*(a + b*tan(e)**2)**2*tan(e)**4, Tru
e))

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.07 \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {15 \, b^{2} \tan \left (f x + e\right )^{7} + 21 \, {\left (2 \, a b - b^{2}\right )} \tan \left (f x + e\right )^{5} + 35 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} \tan \left (f x + e\right )^{3} + 105 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} {\left (f x + e\right )} - 105 \, {\left (a^{2} - 2 \, a b + b^{2}\right )} \tan \left (f x + e\right )}{105 \, f} \]

[In]

integrate(tan(f*x+e)^4*(a+b*tan(f*x+e)^2)^2,x, algorithm="maxima")

[Out]

1/105*(15*b^2*tan(f*x + e)^7 + 21*(2*a*b - b^2)*tan(f*x + e)^5 + 35*(a^2 - 2*a*b + b^2)*tan(f*x + e)^3 + 105*(
a^2 - 2*a*b + b^2)*(f*x + e) - 105*(a^2 - 2*a*b + b^2)*tan(f*x + e))/f

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1579 vs. \(2 (85) = 170\).

Time = 2.52 (sec) , antiderivative size = 1579, normalized size of antiderivative = 17.35 \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\text {Too large to display} \]

[In]

integrate(tan(f*x+e)^4*(a+b*tan(f*x+e)^2)^2,x, algorithm="giac")

[Out]

1/105*(105*a^2*f*x*tan(f*x)^7*tan(e)^7 - 210*a*b*f*x*tan(f*x)^7*tan(e)^7 + 105*b^2*f*x*tan(f*x)^7*tan(e)^7 - 7
35*a^2*f*x*tan(f*x)^6*tan(e)^6 + 1470*a*b*f*x*tan(f*x)^6*tan(e)^6 - 735*b^2*f*x*tan(f*x)^6*tan(e)^6 + 105*a^2*
tan(f*x)^7*tan(e)^6 - 210*a*b*tan(f*x)^7*tan(e)^6 + 105*b^2*tan(f*x)^7*tan(e)^6 + 105*a^2*tan(f*x)^6*tan(e)^7
- 210*a*b*tan(f*x)^6*tan(e)^7 + 105*b^2*tan(f*x)^6*tan(e)^7 + 2205*a^2*f*x*tan(f*x)^5*tan(e)^5 - 4410*a*b*f*x*
tan(f*x)^5*tan(e)^5 + 2205*b^2*f*x*tan(f*x)^5*tan(e)^5 - 35*a^2*tan(f*x)^7*tan(e)^4 + 70*a*b*tan(f*x)^7*tan(e)
^4 - 35*b^2*tan(f*x)^7*tan(e)^4 - 735*a^2*tan(f*x)^6*tan(e)^5 + 1470*a*b*tan(f*x)^6*tan(e)^5 - 735*b^2*tan(f*x
)^6*tan(e)^5 - 735*a^2*tan(f*x)^5*tan(e)^6 + 1470*a*b*tan(f*x)^5*tan(e)^6 - 735*b^2*tan(f*x)^5*tan(e)^6 - 35*a
^2*tan(f*x)^4*tan(e)^7 + 70*a*b*tan(f*x)^4*tan(e)^7 - 35*b^2*tan(f*x)^4*tan(e)^7 - 3675*a^2*f*x*tan(f*x)^4*tan
(e)^4 + 7350*a*b*f*x*tan(f*x)^4*tan(e)^4 - 3675*b^2*f*x*tan(f*x)^4*tan(e)^4 - 42*a*b*tan(f*x)^7*tan(e)^2 + 21*
b^2*tan(f*x)^7*tan(e)^2 + 140*a^2*tan(f*x)^6*tan(e)^3 - 490*a*b*tan(f*x)^6*tan(e)^3 + 245*b^2*tan(f*x)^6*tan(e
)^3 + 1995*a^2*tan(f*x)^5*tan(e)^4 - 4410*a*b*tan(f*x)^5*tan(e)^4 + 2205*b^2*tan(f*x)^5*tan(e)^4 + 1995*a^2*ta
n(f*x)^4*tan(e)^5 - 4410*a*b*tan(f*x)^4*tan(e)^5 + 2205*b^2*tan(f*x)^4*tan(e)^5 + 140*a^2*tan(f*x)^3*tan(e)^6
- 490*a*b*tan(f*x)^3*tan(e)^6 + 245*b^2*tan(f*x)^3*tan(e)^6 - 42*a*b*tan(f*x)^2*tan(e)^7 + 21*b^2*tan(f*x)^2*t
an(e)^7 + 3675*a^2*f*x*tan(f*x)^3*tan(e)^3 - 7350*a*b*f*x*tan(f*x)^3*tan(e)^3 + 3675*b^2*f*x*tan(f*x)^3*tan(e)
^3 - 15*b^2*tan(f*x)^7 + 84*a*b*tan(f*x)^6*tan(e) - 147*b^2*tan(f*x)^6*tan(e) - 210*a^2*tan(f*x)^5*tan(e)^2 +
840*a*b*tan(f*x)^5*tan(e)^2 - 735*b^2*tan(f*x)^5*tan(e)^2 - 2730*a^2*tan(f*x)^4*tan(e)^3 + 6300*a*b*tan(f*x)^4
*tan(e)^3 - 3675*b^2*tan(f*x)^4*tan(e)^3 - 2730*a^2*tan(f*x)^3*tan(e)^4 + 6300*a*b*tan(f*x)^3*tan(e)^4 - 3675*
b^2*tan(f*x)^3*tan(e)^4 - 210*a^2*tan(f*x)^2*tan(e)^5 + 840*a*b*tan(f*x)^2*tan(e)^5 - 735*b^2*tan(f*x)^2*tan(e
)^5 + 84*a*b*tan(f*x)*tan(e)^6 - 147*b^2*tan(f*x)*tan(e)^6 - 15*b^2*tan(e)^7 - 2205*a^2*f*x*tan(f*x)^2*tan(e)^
2 + 4410*a*b*f*x*tan(f*x)^2*tan(e)^2 - 2205*b^2*f*x*tan(f*x)^2*tan(e)^2 - 42*a*b*tan(f*x)^5 + 21*b^2*tan(f*x)^
5 + 140*a^2*tan(f*x)^4*tan(e) - 490*a*b*tan(f*x)^4*tan(e) + 245*b^2*tan(f*x)^4*tan(e) + 1995*a^2*tan(f*x)^3*ta
n(e)^2 - 4410*a*b*tan(f*x)^3*tan(e)^2 + 2205*b^2*tan(f*x)^3*tan(e)^2 + 1995*a^2*tan(f*x)^2*tan(e)^3 - 4410*a*b
*tan(f*x)^2*tan(e)^3 + 2205*b^2*tan(f*x)^2*tan(e)^3 + 140*a^2*tan(f*x)*tan(e)^4 - 490*a*b*tan(f*x)*tan(e)^4 +
245*b^2*tan(f*x)*tan(e)^4 - 42*a*b*tan(e)^5 + 21*b^2*tan(e)^5 + 735*a^2*f*x*tan(f*x)*tan(e) - 1470*a*b*f*x*tan
(f*x)*tan(e) + 735*b^2*f*x*tan(f*x)*tan(e) - 35*a^2*tan(f*x)^3 + 70*a*b*tan(f*x)^3 - 35*b^2*tan(f*x)^3 - 735*a
^2*tan(f*x)^2*tan(e) + 1470*a*b*tan(f*x)^2*tan(e) - 735*b^2*tan(f*x)^2*tan(e) - 735*a^2*tan(f*x)*tan(e)^2 + 14
70*a*b*tan(f*x)*tan(e)^2 - 735*b^2*tan(f*x)*tan(e)^2 - 35*a^2*tan(e)^3 + 70*a*b*tan(e)^3 - 35*b^2*tan(e)^3 - 1
05*a^2*f*x + 210*a*b*f*x - 105*b^2*f*x + 105*a^2*tan(f*x) - 210*a*b*tan(f*x) + 105*b^2*tan(f*x) + 105*a^2*tan(
e) - 210*a*b*tan(e) + 105*b^2*tan(e))/(f*tan(f*x)^7*tan(e)^7 - 7*f*tan(f*x)^6*tan(e)^6 + 21*f*tan(f*x)^5*tan(e
)^5 - 35*f*tan(f*x)^4*tan(e)^4 + 35*f*tan(f*x)^3*tan(e)^3 - 21*f*tan(f*x)^2*tan(e)^2 + 7*f*tan(f*x)*tan(e) - f
)

Mupad [B] (verification not implemented)

Time = 11.76 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.40 \[ \int \tan ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \, dx=\frac {\mathrm {atan}\left (\frac {\mathrm {tan}\left (e+f\,x\right )\,{\left (a-b\right )}^2}{a^2-2\,a\,b+b^2}\right )\,{\left (a-b\right )}^2}{f}+\frac {{\mathrm {tan}\left (e+f\,x\right )}^5\,\left (\frac {2\,a\,b}{5}-\frac {b^2}{5}\right )}{f}-\frac {\mathrm {tan}\left (e+f\,x\right )\,\left (a^2-2\,a\,b+b^2\right )}{f}+\frac {b^2\,{\mathrm {tan}\left (e+f\,x\right )}^7}{7\,f}+\frac {{\mathrm {tan}\left (e+f\,x\right )}^3\,\left (\frac {a^2}{3}-\frac {2\,a\,b}{3}+\frac {b^2}{3}\right )}{f} \]

[In]

int(tan(e + f*x)^4*(a + b*tan(e + f*x)^2)^2,x)

[Out]

(atan((tan(e + f*x)*(a - b)^2)/(a^2 - 2*a*b + b^2))*(a - b)^2)/f + (tan(e + f*x)^5*((2*a*b)/5 - b^2/5))/f - (t
an(e + f*x)*(a^2 - 2*a*b + b^2))/f + (b^2*tan(e + f*x)^7)/(7*f) + (tan(e + f*x)^3*(a^2/3 - (2*a*b)/3 + b^2/3))
/f